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Introduction

We consider a wireless communication problem.
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The analogical equivalent system is :

e

s, —= (1) 70

with
* (Sh)z @ zero mean unit variance i.i.d. symbol sequence transmitted at bau@.rate
o ﬁ(t) results from the shaping filter and a multipath propagation channel.
e W(t) a white noise.

e Y(t) the analogical received signal.

Purposeof blind equalization :

Retrieve(s,),., Without any knowledge of the channel from tfig) estimated statistics.
Our work

Compare second order based methods with a fourth order based method (the CMA).

We choose to oversampfét) in respect of the second order based methods.
The discret equivalent system is :

y(n) = [h(Z)] sh +w(n)
with
e y(n) = [§(2n%),¥((2n+ 1)

o w(n) = [W(2ns),W((2n+1)%)]".

)] (itis a 2-variate discrete time signal).

2
e h=[A(2KkF),h((2k+1)5)]",
o h(Z):zlll/I:O th_k.

We denoteh(z) the scalar filter given bi(z) = eVt h(2k )z k.
— h(z) is band limited.

Compared methods

Second order based methods

1. Subspace method (SSM) introduced by [2]
— Poor performances H(z) is band limited. [1]

2. Optimally weighted covariance matching (CM).
— the best second order statistics based method to estiimte

After estimate oh(z), we need to equalize our received signal.
—> We choose a Wiener equalizer.

y(n) - [8(2)] > Sn-d

n

18

—— We have theorical results.

Fourth Order based method

1. Constant Modulus Algorithm (CMA)
— The most standard higher order statistics based method.

Provideg(z) an equalizer estimate.

() = [g(2)] [ S

— We have practical results.

Comparison with a non blind equalization scheme

Wiener equalizer computes with the full knowledgeh¢z).

The covariance matching estimate.

oy(n) ]

Let Yn(N) be . DefineRy (h) the covariance matrix:

y(n; N)

Rn(h) = In(h)Tn(h)* + 02l
where
e h=(hy,...,h{,)"
e 07 is the known noise variance.
e Tn(h) is the generalized Sylvester.

DenoteRy the empirical estimate d@y (h).

_ 1 T-1
RN = ? ;YN(I’])YN(n)#<
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Principle :
Look for a filterf(z) for which the matrixRy (f) is as close as possible from the estinfate

: [ ved(Rn) —veqRw(f)) ] i
veqRN) — vedRy(f))
whereW is a positive hermitian weighted matrix. It is well known that,

. [ veqRy) — vedRy(h))

veqRyn) —vedRn(h))

As h is a complex vector, we obtain that,

hw = arg min)\W

] 5 N(0, Gry)

hw — h
T| = = (0, Zw)

with the asymptotic covariance matixxy given by:
Sw = [G*"WG]" G*W (r WG [G*WG]”

where the matriXG equals

~ 0VEeQRn(f)) oVEeQRn(f)) |
G — ovear) |i_p oveqr) |i—n
dVEeQRN(f)) oVEeQRn(f))
| ovearn  |qp oveaf) |i—n

The optimal weightV is Wopt = G&,

(# stands for Moore-Penrose pseudo-inverse)

Conseguences

e The optimal weighted matrix depends lon

e The cost function iIs not convex and admits a lot of local minima.

— Not easy for practical computation.

Analysis of the reconstruction error provided by a Wiener
equalizer based on the covariance matching estimate.

For a known channdi, the Wiener equalizer is thiex 2 FIR filter g(z) = ZE:O gkZ K minimizing I defined
by:
M =E||Voa—[0@lM°| = g=hPRy

with g = (do, . ..,9n) andP is a certain selection/permutation matrix.

In practice,h andRy unknown.
— we only get an estimate of the Wiener equalizer dengteq

6= h"PRy?

whereRy = Tn(h)Tn(h)* + 021,
We evaluate 2
r =€ [|voa— 8@]y(m)|?]

— [ Is the reconstruction error of the symbol sequence.
Assumptions:

e the Wiener filter is independent from the data.

e h — gis differentiable.

Result: p
T(g — g) - N(O7 Cg)
with the asymptotic covariance matitk given by:
Cg — @gzwopt @5
where

@g:

=SS

We obtain

r = E [IVn-a— [0@)]y(0)||2 + E[)188@]ym)|]

Inherent Wiener filter reconstruction erroError due toh estimate

which implies
I = 1—vedh)*PRy'P*vech) + Trace{ ;RN }

Remark :

— Similar calculation for subspace method (okly . changes).

opt

Conclusion

e \We can obtain theorical results for the reconstruction error of the symbol sequence for the subsp
covariance matching methods.

e For CMA, only pratical results.

Simulations results

Reconstruction error of the symbol sequence versus SNR.

A random channel

e Random channel filter witli components.

e PSK4 modulation.
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— All the schemes have quite the same performances.

ace anc

Two realistic channels
Our shaping filter is a square root raised cosine filter with rollBoff = h(z) is band limited.

Constant modulus modulation

e Propagation channel given by the following figures.

e PSK<4 modulation
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SNR (dB) 5.0 | 10.0 | 15.0 | 20.0 | 25.0 | 30.0
SSM /Wiener (dB) | 64.7 | 56.8 | 47.8 | 38.2 | 28.3 | 18.4

We remark that,

e The subspace channel estimate gives extremely poor performance.
e The CMA outperforms the optimal second order scheme.

e The CMA performance is very close from the lower bound corresponding to the exact Wiener filter.

Non-constant modulus modulation

e Propagation channel given by the following figures.

e QAM-16 modulation
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SNR (dB) 50 | 10.0 | 150 | 20.0 | 25.0 | 30.0
SSM/Wiener (dB) | 49.5 | 415 | 325 | 23.0 | 13.3 | 3.7

We remark that,

e For200sized blocs, the CMA falls down due to non constant modulus modulation.

e For1000sized blocs, the CMA still outperforms optimally weighted covariance matching scheme.

Conclusion

— The covariance matching method considerably outperforms the subspace method.
— Standard pratical CMA equalizer produces better reconstruction errors than the theorical optin
weighted covariance matching.
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