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Introduction
We consider a wireless communication problem.
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Propagation channel

Transmiter

Receiver

The analogical equivalent system is :�
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with

• (sn)n∈Z a zero mean unit variance i.i.d. symbol sequence transmitted at baud rate1
Ts

.

• h̃(t) results from the shaping filter and a multipath propagation channel.

• w̃(t) a white noise.

• ỹ(t) the analogical received signal.

Purposeof blind equalization :
Retrieve(sn)n∈Z without any knowledge of the channel from theỹ(t) estimated statistics.
Our work :
Compare second order based methods with a fourth order based method (the CMA).

We choose to oversamplẽy(t) in respect of the second order based methods.
The discret equivalent system is :

y(n) = [h(z)]sn +w(n)

with

• y(n) =
[
ỹ(2nTs

2 ), ỹ((2n+1)Ts
2 )

]T
(it is a 2-variate discrete time signal).

• w(n) =
[
w̃(2nTs

2 ), w̃((2n+1)Ts
2 )

]T
.

• hk =
[
h̃(2kTs

2 ), h̃((2k+1)Ts
2 )

]T
.

• h(z)=∑M
k=0hkz−k.

We denoteh(z) the scalar filter given byh(z) = ∑2M+1
k=0 h̃(2kTs

2 )z−k.
=⇒ h(z) is band limited.

Compared methods

Second order based methods

1. Subspace method (SSM) introduced by [2]
=⇒ Poor performances ifh(z) is band limited. [1]

2. Optimally weighted covariance matching (CM).
=⇒ the best second order statistics based method to estimateh(z).

After estimate ofh(z), we need to equalize our received signal.
=⇒ We choose a Wiener equalizer.
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−→ We have theorical results.

Fourth Order based method

1. Constant Modulus Algorithm (CMA)
=⇒ The most standard higher order statistics based method.

Provideĝ(z) an equalizer estimate.
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−→ We have practical results.

Comparison with a non blind equalization scheme

Wiener equalizer computes with the full knowledge ofh(z).
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The covariance matching estimate.

Let YN(n) be




y(n)
...

y(n−N)


. DefineRN(h) the covariance matrix:

RN(h) = TN(h)TN(h)∗+σ2I

where

• h = (hT
0, . . . ,h

T
M)T

• σ2 is the known noise variance.

• TN(h) is the generalized Sylvester.

DenoteR̃N the empirical estimate ofRN(h).

R̃N =
1
T

T−1

∑
n=0

YN(n)YN(n)∗

Principle :
Look for a filterf(z) for which the matrixRN(f) is as close as possible from the estimateR̃N.

ĥW = argmin
f

∥∥∥∥W
1
2

[
vec(R̃N)−vec(RN(f))
vec(R̃N)−vec(RN(f))

]∥∥∥∥
2

whereW is a positive hermitian weighted matrix. It is well known that,

T

[
vec(R̃N)−vec(RN(h))
vec(R̃N)−vec(RN(h))

]
L−→N (0,CRN)

As h is a complex vector, we obtain that,

T

[
ĥW−h

ĥW−h

]
L−→N (0,ΣW)

with the asymptotic covariance matrixΣW given by:

ΣW = [G?WG]#G?WCRNWG [G?WG]#

where the matrixG equals

G =




∂vec(RN(f))
∂vec(f)

∣∣∣
f=h

∂vec(RN(f))
∂vec(f)

∣∣∣
f=h

∂vec(RN(f))
∂vec(f)

∣∣∣
f=h

∂vec(RN(f))
∂vec(f)

∣∣∣
f=h




The optimal weightW is Wopt = C #
RN

(# stands for Moore-Penrose pseudo-inverse)

Consequences

• The optimal weighted matrix depends onh.

• The cost function is not convex and admits a lot of local minima.

=⇒ Not easy for practical computation.

Analysis of the reconstruction error provided by a Wiener
equalizer based on the covariance matching estimate.

For a known channelh, the Wiener equalizer is the1×2 FIR filter g(z) = ∑N
k=0gkz−k minimizing Γ defined

by:

Γ = E
[
‖vn−d− [g(z)]y(n)‖2

]
=⇒ g = h∗PR−1

N

with g = (g0, . . . ,gN) andP is a certain selection/permutation matrix.

In practice,h andRN unknown.
=⇒ we only get an estimate of the Wiener equalizer denotedĝ(z).

ĝ = ĥ∗PR̂−1
N

whereR̂N = TN(ĥ)TN(ĥ)∗+σ2I .
We evaluate

Γ = E
[
‖vn−d− [ĝ(z)]y(n)‖2

]

=⇒ Γ is the reconstruction error of the symbol sequence.

Assumptions:

• the Wiener filter is independent from the data.

• ĥ→ ĝ is differentiable.

Result :
T(ĝ−g) L−→N (0,Cg)

with the asymptotic covariance matrixCg given by:

Cg = DgΣWoptD∗
g

where

Dg =

[ ∂ĝ
∂ĥ
∂ĝ

ĥ

]

ĥ=h

We obtain
Γ = E

[
‖vn−d− [g(z)]y(n)‖2

]

︸ ︷︷ ︸
Inherent Wiener filter reconstruction error

+ E
[
‖[∆ĝ(z)]y(n)‖2

]

︸ ︷︷ ︸
Error due toh estimate

which implies
Γ = 1−vec(h)?PR−1

N P?vec(h)+Trace{CgRN}
Remark :
=⇒ Similar calculation for subspace method (onlyΣWopt changes).

Conclusion

• We can obtain theorical results for the reconstruction error of the symbol sequence for the subspace and
covariance matching methods.

• For CMA, only pratical results.

Simulations results
Reconstruction error of the symbol sequence versus SNR.

A random channel

• Random channel filter with7 components.

• PSK-4 modulation.
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=⇒ All the schemes have quite the same performances.

Two realistic channels

Our shaping filter is a square root raised cosine filter with roll-off0.7. =⇒ h(z) is band limited.

Constant modulus modulation

• Propagation channel given by the following figures.

• PSK-4 modulation
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SNR (dB) 5.0 10.0 15.0 20.0 25.0 30.0
SSM / Wiener (dB) 64.7 56.8 47.8 38.2 28.3 18.4

We remark that,

• The subspace channel estimate gives extremely poor performance.

• The CMA outperforms the optimal second order scheme.

• The CMA performance is very close from the lower bound corresponding to the exact Wiener filter.

Non-constant modulus modulation

• Propagation channel given by the following figures.

• QAM-16modulation
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CMA (T=1000)
CMA (T=200)

CM Opt.

SNR (dB) 5.0 10.0 15.0 20.0 25.0 30.0
SSM / Wiener (dB) 49.5 41.5 32.5 23.0 13.3 3.7

We remark that,

• For200sized blocs, the CMA falls down due to non constant modulus modulation.

• For1000sized blocs, the CMA still outperforms optimally weighted covariance matching scheme.

Conclusion
=⇒ The covariance matching method considerably outperforms the subspace method.
=⇒ Standard pratical CMA equalizer produces better reconstruction errors than the theorical optimally
weighted covariance matching.
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