Fractionally spaced blind equalization: CMA versus Second Order based methods.

L. Mazet, Ph. Ciblat and Ph. Loubaton Laboratoire Système de Communication Université de Marne-la-Vallée email: (mazet, ciblat, loubaton)@univ-mlv.fr

5, boulevard Descartes Champs sur Marne 77454 Marne-la-Vallée Cedex 2, France Tel.: (33) 1 60 95 72 90 Fax: (33) 1 60 95 72 14

The work of the first and second authors are respectively supported by CELAR and DGA/CNRS fellowship

Introduction

We consider a wireless communication problem.

The analogical equivalent system is:

- $(s_n)_{n\in\mathbb{Z}}$ a zero mean unit variance i.i.d. symbol sequence transmitted at band rate $\frac{1}{T_n}$.
- $\tilde{h}(t)$ results from the shaping filter and a multipath propagation channel.
- $\tilde{w}(t)$ a white noise.
- $\tilde{y}(t)$ the analogical received signal.

Purpose of blind equalization :

Retrieve $(s_n)_{n\in\mathbb{Z}}$ without any knowledge of the channel from the $\tilde{y}(t)$ estimated statistics.

Compare second order based methods with a fourth order based method (the CMA).

We choose to oversample $\tilde{y}(t)$ in respect of the second order based methods. The discret equivalent system is:

$$\mathbf{y}(n) = [\mathbf{h}(z)] s_n + \mathbf{w}(n)$$

- $\mathbf{y}(n) = \left[\tilde{y}(2n\frac{T_s}{2}), \tilde{y}((2n+1)\frac{T_s}{2})\right]^{\mathrm{T}}$ (it is a 2-variate discrete time signal).
- $\mathbf{w}(n) = \left[\tilde{w}(2n\frac{T_s}{2}), \tilde{w}((2n+1)\frac{T_s}{2})\right]^{\mathrm{T}}.$
- $\mathbf{h}_k = \left[\tilde{h}(2k\frac{T_s}{2}), \tilde{h}((2k+1)\frac{T_s}{2})\right]^{\mathrm{T}}.$
- $\mathbf{h}(z) = \sum_{k=0}^{M} \mathbf{h}_k z^{-k}$.

We denote h(z) the scalar filter given by $h(z) = \sum_{k=0}^{2M+1} \tilde{h}(2k\frac{T_s}{2})z^{-k}$. $\implies h(z)$ is band limited.

Compared methods

Second order based methods

- 1. Subspace method (SSM) introduced by [2] \Longrightarrow Poor performances if h(z) is band limited. [1]
- 2. Optimally weighted covariance matching (CM). \Longrightarrow the best second order statistics based method to estimate h(z).

After estimate of h(z), we need to equalize our received signal.

⇒ We choose a Wiener equalizer.

Fourth Order based method

1. Constant Modulus Algorithm (CMA)

⇒ The most standard higher order statistics based method.

Provide $\hat{\mathbf{g}}(z)$ an equalizer estimate.

→ We have practical results.

Comparison with a non blind equalization scheme

Wiener equalizer computes with the full knowledge of $\mathbf{h}(z)$.

The covariance matching estimate.

Let
$$\mathbf{Y}_N(n)$$
 be $\begin{bmatrix} \mathbf{y}(n) \\ \vdots \\ \mathbf{y}(n-N) \end{bmatrix}$. Define $\mathbf{R}_N(\mathbf{h})$ the covariance matrix:

$$\mathbf{R}_N(\mathbf{h}) = \mathfrak{T}_N(\mathbf{h}) \mathfrak{T}_N(\mathbf{h})^* + \mathbf{\sigma}^2 I$$

where

- $\mathbf{h} = (\mathbf{h}_0^{\mathrm{T}}, \dots, \mathbf{h}_M^{\mathrm{T}})^{\mathrm{T}}$
- σ^2 is the known noise variance.
- $\mathcal{T}_N(\mathbf{h})$ is the generalized Sylvester.

Denote $\tilde{\mathbf{R}}_N$ the empirical estimate of $\mathbf{R}_N(\mathbf{h})$.

$$\tilde{\mathbf{R}}_N = \frac{1}{T} \sum_{n=0}^{T-1} \mathbf{Y}_N(n) \mathbf{Y}_N(n)^*$$

Principle:

Look for a filter $\mathbf{f}(z)$ for which the matrix $\mathbf{R}_N(\mathbf{f})$ is as close as possible from the estimate $\tilde{\mathbf{R}}_N$.

$$\hat{\mathbf{h}}_W = \arg\min_{\mathbf{f}} \left\| \mathbf{W}^{\frac{1}{2}} \left[\begin{array}{c} \operatorname{vec}(\tilde{\mathbf{R}}_N) - \operatorname{vec}(\mathbf{R}_N(\mathbf{f})) \\ \operatorname{vec}(\overline{\tilde{\mathbf{R}}}_N) - \operatorname{vec}(\overline{\mathbf{R}}_N(\mathbf{f})) \end{array} \right] \right\|^2$$

where W is a positive hermitian weighted matrix. It is well known that,

$$T \left[\begin{array}{c} \operatorname{vec}(\widetilde{\mathbf{R}}_N) - \operatorname{vec}(\mathbf{R}_N(\mathbf{h})) \\ \operatorname{vec}(\overline{\widetilde{\mathbf{R}}}_N) - \operatorname{vec}(\overline{\mathbf{R}}_N(\mathbf{h})) \end{array} \right] \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}(0, \mathcal{C}_{\mathbf{R}_N})$$

As **h** is a complex vector, we obtain that,

$$T \left[egin{array}{c} \hat{f h}_W - {f h} \ \hat{f h}_W - \overline{f h} \end{array}
ight] \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}(0, oldsymbol{\Sigma_W})$$

with the asymptotic covariance matrix $\Sigma_{\mathbf{W}}$ given by:

 $\mathbf{\Sigma}_{\mathbf{W}} = \left[\mathbf{G}^{\star}\mathbf{W}\mathbf{G}\right]^{\#}\mathbf{G}^{\star}\mathbf{W}\mathcal{C}_{\mathbf{R}_{N}}\mathbf{W}\mathbf{G}\left[\mathbf{G}^{\star}\mathbf{W}\mathbf{G}\right]^{\#}$

where the matrix **G** equals

$$\mathbf{G} = \begin{bmatrix} \frac{\partial \text{vec}(\mathbf{R}_N(\mathbf{f}))}{\partial \text{vec}(\mathbf{f})} \\ \frac{\partial \text{vec}(\overline{\mathbf{R}}_N(\mathbf{f}))}{\partial \text{vec}(\mathbf{f})} \end{bmatrix}_{\mathbf{f} = \mathbf{h}} \begin{bmatrix} \frac{\partial \text{vec}(\mathbf{R}_N(\mathbf{f}))}{\partial \text{vec}(\overline{\mathbf{f}})} \\ \frac{\partial \text{vec}(\overline{\mathbf{R}}_N(\mathbf{f}))}{\partial \text{vec}(\overline{\mathbf{f}})} \end{bmatrix}_{\mathbf{f} = \mathbf{h}} \begin{bmatrix} \mathbf{f} = \mathbf{h} \\ \frac{\partial \text{vec}(\overline{\mathbf{R}}_N(\mathbf{f}))}{\partial \text{vec}(\overline{\mathbf{f}})} \end{bmatrix}_{\mathbf{f} = \mathbf{h}} \end{bmatrix}$$

The optimal weight **W** is $\mathbf{W}_{opt} = \mathcal{C}_{\mathbf{R}_N}^{\#}$ (# stands for Moore-Penrose pseudo-inverse)

Consequences

- The optimal weighted matrix depends on **h**. • The cost function is not convex and admits a lot of local minima.
 - ⇒ Not easy for practical computation.

Analysis of the reconstruction error provided by a Wiener equalizer based on the covariance matching estimate.

For a known channel **h**, the Wiener equalizer is the 1×2 FIR filter $\mathbf{g}(z) = \sum_{k=0}^{N} \mathbf{g}_k z^{-k}$ minimizing Γ defined

$$\Gamma = \mathbf{E} \left[\|v_{n-d} - [\mathbf{g}(z)]\mathbf{y}(n)\|^2 \right] \implies \mathbf{g} = \mathbf{h}^* P \mathbf{R}_N^{-1}$$

with $\mathbf{g} = (\mathbf{g}_0, \dots, \mathbf{g}_N)$ and P is a certain selection/permutation matrix.

In practice, **h** and \mathbf{R}_N unknown. \implies we only get an estimate of the Wiener equalizer denoted $\hat{\mathbf{g}}(z)$.

 $\hat{\mathbf{g}} = \hat{\mathbf{h}}^* P \hat{\mathbf{R}}_N^{-1}$

where $\hat{\mathbf{R}}_N = \mathcal{T}_N(\hat{\mathbf{h}})\mathcal{T}_N(\hat{\mathbf{h}})^* + \sigma^2 I$. We evaluate

 $\Gamma = \mathbf{E} \left| \left\| v_{n-d} - \left[\hat{\mathbf{g}}(z) \right] \mathbf{y}(n) \right\|^2 \right|$

 $\Longrightarrow \Gamma$ is the reconstruction error of the symbol sequence.

Assumptions:

- the Wiener filter is independent from the data.
- $\hat{\mathbf{h}} \rightarrow \hat{\mathbf{g}}$ is differentiable.

Result:

$$T(\hat{\mathbf{g}} - \mathbf{g}) \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}(0, \mathcal{C}_{\mathbf{g}})$$

with the asymptotic covariance matrix C_g given by:

$$\mathcal{C}_{\mathbf{g}} = \mathcal{D}_{\mathbf{g}} \Sigma_{\mathbf{W}_{opt}} \mathcal{D}_{\mathbf{g}}^*$$

where

We obtain

$$\mathbf{E}\left[\|v_{n-d} - [\mathbf{g}(z)]\mathbf{y}(n)\|^2\right] + \mathbf{E}\left[\|[\Delta\hat{\mathbf{g}}(z)]\mathbf{y}(n)\|^2\right]$$
 Inherent Wiener filter reconstruction error Error due to \mathbf{h} estimate

which implies

$$\Gamma = 1 - \text{vec}(\mathbf{h})^* P \mathbf{R}_N^{-1} P^* \text{vec}(\mathbf{h}) + \text{Trace} \{ \mathcal{C}_{\mathbf{g}} \mathbf{R}_N \}$$

Remark ·

 \Longrightarrow Similar calculation for subspace method (only $\Sigma_{\mathbf{W}_{ont}}$ changes).

Conclusion

- We can obtain theorical results for the reconstruction error of the symbol sequence for the subspace and covariance matching methods.
- For CMA, only pratical results.

Simulations results

Reconstruction error of the symbol sequence versus SNR.

A random channel

- Random channel filter with 7 components.
- PSK-4 modulation.

⇒ All the schemes have quite the same performances.

Two realistic channels

Our shaping filter is a square root raised cosine filter with roll-off 0.7. $\Longrightarrow h(z)$ is band limited.

Constant modulus modulation

- Propagation channel given by the following figures.
- PSK-4 modulation

 SNR (dB)
 5.0
 10.0
 15.0
 20.0
 25.0
 30.0

 SSM / Wiener (dB)
 64.7
 56.8
 47.8
 38.2
 28.3
 18.4

We remark that,

- The subspace channel estimate gives extremely poor performance.
- The CMA outperforms the optimal second order scheme.
- The CMA performance is very close from the lower bound corresponding to the exact Wiener filter.

Non-constant modulus modulation

- Propagation channel given by the following figures.
- QAM-16 modulation

 SNR (dB)
 5.0
 10.0
 15.0
 20.0
 25.0
 30.0

 SSM / Wiener (dB)
 49.5
 41.5
 32.5
 23.0
 13.3
 3.7

We remark that,

- For 200 sized blocs, the CMA falls down due to non constant modulus modulation.
- For 1000 sized blocs, the CMA still outperforms optimally weighted covariance matching scheme.

Conclusion

⇒ The covariance matching method considerably outperforms the subspace method. ⇒ Standard pratical CMA equalizer produces better reconstruction errors than the theorical optimally weighted covariance matching.

References

- [1] Ph. Ciblat, Ph. Loubaton, "Second order blind equalization: the band limited case", in *Proc. ICASSP* 98, vol. 6, pp. 3401-3404, Seattle, 1998.
- [2] E. Moulines, P. Duhamel, J.F. Cardoso, S. Mayrargue, "Subspace method for the blind equalization of multichannel FIR filters" IEEE Trans. Signal Processing, vol. 43, pp. 516-526, February 1995.