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In this paper, we consider the estimation problem of the modulation rate of an unknown emitter using a linear (unknown)
modulation. We use the basic observation that the received signal is cyclostationarity, and that the modulation rate is
one of its cyclic frequency. The classical estimator [1] based on the maximization in the cyclic frequency domain of a sum
of square modulus cyclic correlations sum has poor performance if the excess bandwidth used by the emitter is small. In
this paper, we study in detail an estimator introduced by Dandawaté and Giannakis [2], which is based on an appropriate
weighted version of the statistics used in [1]. The optimal weighting matrix depends on the unknown parameters, and
has to be estimated in practice. However, the optimal matrix depends in general on the unknown cyclic frequencies, and
is thus difficult to estimate. The main contribution of this paper is to show that, for low excess bandwidth signals, the
optimal weighting matrix actually does not depend on the non zero cyclic frequencies of the received. It can be thus
consistently estimated from the cyclic statistics of the observation at cyclic frequency 0. We evaluate the performance
of the weighted approach, and show that it provide considerable improvement over the traditional estimator of [1].

1 Introduction

Let xa(t) be the received signal. We assume that it can be written as:

xa(t) =
∑

n∈Z
s(n)ha(t− nTs) + ba(t) (1)

where, (s(n))n∈Z is a circular i.i.d symbol sequence, Ts represents the baud rate to be estimated, ha(t) results from the
emission and the reception filters and from the multi-path effects, and is therefore unknown, and ba(t) is a Gaussian noise
with a known variance σ2. In this paper, we assume as usual that ha(t) is causal and time limited.

xa(t) owns the following property: all whole multiple of k
Ts

is a cyclic-frequency. However, due to the bandwidth of the
usual shaping filters, we will suppose that xa(t) has only one non-zero positive cyclic frequency, i.e. 1

Ts
. In this paper, we

make the reasonable assumption that the signal bandwidth has been roughly estimated. Based on this first evaluation,
it is of course possible to sample xa(t) with a rate greater than Ts

4 . We denote by x(k) the time series x(k) = xa(kTe);
as Te < Ts/4, x(k) is cyclostationary, its non zero positive cyclic frequency is α0 = Ts

Te
, and more importantly, the

corresponding cyclic spectrum coincides (up to a scaling factor) with the cyclic spectrum of the continuous time signal
xa(t).

2 The basic approach.

For each α, we denote by R̂
(α)
T (τ) the statistics given by

R̂
(α)
T (τ) =

1
T

T−1∑
n=0

x(n + τ)x(n)e−2πiαn (2)

where T is the number of samples. For all τ , when T →∞, R̂
(α)
T (τ) converges toward 0 when α is different from 0, α0 and

−α0. Let R(α) = [R(α)
0 . . . R

(α)
N ]T and R̂(α)

T = [R̂(α)
T (0) . . . R̂

(α)
T (N)]T. A simple estimate of α0 can be found by solving the
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following maximization problem (see [1]):
max
α∈I

‖R̂(α)
T ‖2 (3)

where N is the number of cyclic correlation coefficients taken into account and I is a search interval included in ]0, 1/2[.
Of course, 0 should not belong to I. The choice of the interval I has a deep influence on the estimator of α0 because
RT (α) = E

[
‖R̂(α)

T ‖2
]

may take rather large values around 0. If the excess bandwidth of the received signal is not large
enough, RT (α0) may be compared with RT (α) for α near 0, and the estimate of α0 based on (3) may totally fail. To
illustrate this, we plot in fig 1 RT (α) versus α for α 6= 0, α0. RT (α0) is also represented by a cross. Here, the shaping
filter is a square root raised cosine with roll off are set to 0.2 (left) and 0.5 (right). Moreover, RT (α) is evaluated by
using a classical Gaussian approximation of the vector R̂(α)

T In order to assess the statistical performance of this standard
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Figure 1: RT (α) versus α.

estimate, we have performed some Monte Carlo simulations upon 1000 symbols. In table 1, we give the probability that

Roff-off 0.2 0.5 0.7

Performance (%) 0.00 29.46 99.99

Table 1: Basic estimator performances

the estimate of α0 lies in the interval [α0 − 1
2T α0 + 1

2T ] versus the roll off when the searching interval is [ 12α0
3
2α0] . The

signal to noise ratio is set to 60dB and the number of realizations is equal to 100000. It is quite clear that the performance
of the estimate are extremely poor for small roll off.

3 The weighted approach.

The main weakness of the above standard estimate lies on the observation that the mean value ofRT (α) for α 6= α0 depends
on α, and seems to increase when α converges toward 0. In [2], Dandawaté and Giannakis proposed to use the norm of
a weighted version of vector R̂(α)

T in order to estimate (detect) the cyclic frequency. They proposed to use the statistics
Ŝ(α)

T = Γ(α)−
1
2 R̂(α)

T where Γ(α) is the asymptotic covariance matrix of the estimator R̂(α)
T . By asymptotic covariance

matrix, we means that for α 6= 0,±α0

√
T

(
R̂(α0)

T −R(α0)
) L−→ N (0, Γ(α0))

R̂(α)
T is approximatively a Gaussian centered random vector with covariance matrix Γ(α)

T while for α = α0, R̂(α0)
T is

approximatively a Gaussian random vector with mean R(α0) and covariance matrix Γ(α0)
T . Using that the symbol sequence

is circular, one can show that the vector R̂(α)
T is asymptotically circular except for α = 0, α0

2 , α0. Therefore, except for
those values of α, the asymptotic distribution of the norm square of the statistics

Ŝ(α)
T = Γ(α)−

1
2 R̂(α)

T (4)

is approximatively a χ2 distribution with 2N + 2 degrees of freedom and with variance N+1
T . If α = α0, the asymptotic

distribution of ‖Ŝ(α)
T ‖2 is Gaussian. Its means and its variance can be calculated in closed form. In this paper, we propose

to estimate α by maximizing ‖Ŝ(α)
T ‖2 over an interval I included in ]0 1

2 [. The following figures suggests that the use of
‖Ŝ(α)

T ‖2 may provide better performance than the standard approach described above. In fig, we represent the mean of
‖Ŝ(α)

T ‖2. For α = α0 (which is of course constant) and the mean of ‖Ŝ(α0)
T ‖2 as well as a 99% confidence interval on the

statistics ‖(Ŝ(α0)
T ‖2. However, the matrix Γ(α) is of course unknown. It has therefore to be estimated from the available

data. Its closed form expression can be calculated along the lines of [2]. The important to mention is that its general
expression depends α0 and of the cyclic statistics of the observation at this frequency. Therefore, in order to estimate Γ(α)
consistently, a good initial guess of α0 has to be obtained. As the standard method of [1] provides very poor estimates,
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Figure 2: E
[
‖Ŝ(α)

T ‖2
]

versus α

the derivation of such an initial estimator is not obvious. Fortunately, it can shown that, due to the band-limitedness of
the shaping filter, the matrix Γ(α) does not depend on α0 for α > α0r, where r is the roll off. For those values of α, Γ(α)
is given by

[Γ(α)](τ1,τ2)
=

∫ 1
2

− 1
2

S(0)(e2iπf )S(0)(e2iπ(f−α))e2iπ(τ1−τ2)fdf (5)

Hence, it only depends on cyclic statistics at cyclic frequency 0, and can estimated consistently in a straightforward way.

Γ(α) is a Toeplitz matrix associated to the “spectral density” S(0)(e2iπf )S(0)(e2iπ(f−α)), which is itself non zero in the
interval [− 1+r

2 α0 , 1+r
2 α0] only. Its numerical rank can be easily approximate by the product between the rows number

of Γ(α) and the percentage of the used bandwidth which is (1 + r)α0 − α. Therefore, Γ(α) is very ill conditioned in the
absence of noise, and so is its empirical estimate. Therefore in the calculation of the statistic Γ(α)−

1
2 R̂(α)

T it maybe be
useful to replace the inversion by a pseudo-inversion in a dominant sub-space. In order to chose the dimension v, a treader
has to be done between the value of Γ(α0)#

1
2 R̂(α0)

T and the variance of Γ(α)#
1
2 R̂(α)

T for α 6= α0 which is equal to v
T .

4 Simulations

We have performed Monte Carlo simulations on 100000 experimentations to assess the statistical performance of the
weighted estimator.

Roff-off 0.2 0.5 0.7

Performance (%) 99.808 99.674 100.00

Table 2: Weighted estimator performance versus roll-off.

As for table 1, we give, in table 1, the probability that the estimate of α0 lies in the interval [α0 − 1
2T α0 + 1

2T ] versus the
roll off in the same experimentation context and the dimension of the sub-space in which we pseudo-inverse Γ(α) estimate
is 2.

It is quiet interesting to show that, even for a roll-off of 0.7 when Γ(α) estimate becomes to be biased (the Γ(α) estimate
we used become to be biased when α > α0r and our search interval was [ 12α0

3
2α0] which is the case for a roll-off of 0.7),

the weighted estimator shows very good performances. In fact for such large excess bandwidth the weighting matrix is not
so crucial.

5 Conclusion

We present a approach to estimate the symbol rate using the cyclic correlation vector optimally weighted and we assess
an estimator of the weighting matrix. Even if the normalized approach is less easy to use than the standard approach of
[1], we show that it could be more powerful even the excess bandwidth is very small.

References

[1] W.A. Gardner, Signal interception, a unifying theorical framework for feature detection, IEEE trans. on com., Vol. 36
No. 8, August 1988.
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